LINEAR ALGEBRA HOMEWORK

JULY 31, 2023

Exercise 1. Given a matrix A, define the row space of A as Row(A) = span of the rows of A.

Prove that each ERO does not change row space of a matrix. So we have if $B \sim A$, then Row(B) = Row(A).

Exercise 2. By Proposition in class, there exist $v'_1, \ldots, v'_s \in \mathcal{V}$ such that $f(v'_1), \ldots, f(v'_s) \in \mathcal{U}$ form a basis of im f. Let $v_1, \ldots, v_r \in ker f \subset \mathcal{V}$ be a basis of ker f. Prove that these r + s vectors in \mathcal{V} form a basis of \mathcal{V} . Then prove the equation of conservation of dimensions holds.

Exercise 3. Assume $\dim_F \mathcal{V}$ is finite and \mathcal{W} is a subspace of \mathcal{V} . Compute $\dim_F \mathcal{V}/\mathcal{W}$. (Write in 3 lines.)

Exercise 4. Let

$$\begin{array}{ccccc} \varphi : & F^n & \longrightarrow & \mathcal{V} \\ & & \stackrel{\sim}{\underset{e_i}{\longmapsto}} & v_i \end{array}$$

be a linear bijection. Then φ can be identified as $\varphi \equiv (v_1, \ldots, v_n)$, and v_1, \ldots, v_n form a basis of \mathcal{V} .

For any $f \in \text{End } \mathcal{V}$, and any $1 \leq i \leq n$, $f(v_i) \in \mathcal{V}$. Then there exists unique $f_{1i}, \ldots, f_{ni} \in F$ such that

$$f(v_i) = \sum_{j=1}^n f_{ji}v_j.$$

In this way give any $f \in \text{End } \mathcal{V}$, we can define a unique $(f_{ji}) \in M_n$. Therefore we have a map

$$\begin{array}{cccc} \varPhi : & \operatorname{End} \mathcal{V} & \longrightarrow & M_n \\ & f & \longmapsto & (f_{ji}). \end{array}$$

Prove that Φ is an isomorphism, i.e. Φ is a linear bijection such that ¹

(1)
$$\Phi(1) = I_n = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix};$$

(2) $\Phi(ff') = \Phi(f)\Phi(f');$
(3) $\Phi(f+f') = \Phi(f) + \Phi(f').$